

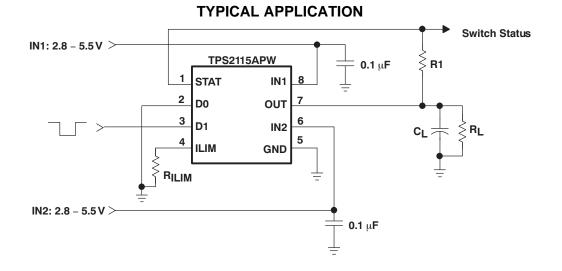
TPS2114A TPS2115A

SBVS044F-MARCH 2004-REVISED MAY 2012

AUTOSWITCHING POWER MUX

Check for Samples: TPS2114A, TPS2115A

FEATURES


- Two-Input, One-Output Power Multiplexer with Low r_{DS(on)} Switches:
 - 120 mΩ Typ (TPS2114A)
 - 84 mΩ Typ (TPS2115A)
- Reverse and Cross-Conduction Blocking
- Wide Operating Voltage Range: 2.8 V to 5.5 V
- Low Standby Current: 0.5-µA Typ
- Low Operating Current: 55-µA Typ
- Adjustable Current Limit
- Controlled Output Voltage Transition Times Limit Inrush Current and Minimize Output Voltage Hold-Up Capacitance
- CMOS- and TTL-Compatible Control Inputs
- Manual and Auto-Switching Operating Modes
- Thermal Shutdown
- Available in TSSOP-8 and 3-mm × 3-mm SON-8 Packages

APPLICATIONS

- PCs
- PDAs
- Digital Cameras
- Modems
- Cell Phones
- Digital Radios
- MP3 Players

DESCRIPTION

The TPS211xA family of power multiplexers enables seamless transition between two power supplies (such as a battery and a wall adapter), each operating at 2.8 V to 5.5 V and delivering up to 2 A, depending on package. The TPS211xA family includes extensive protection circuitry, including userprogrammable current limiting, thermal protection, inrush current control, seamless supply transition, cross-conduction blocking, and reverse-conduction blocking. These features greatly simplify designing power multiplexer applications.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

TPS2114A TPS2115A

SBVS044F-MARCH 2004-REVISED MAY 2012

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

T _A	PACKAGE	I _{OUT}	ORDERING NUMBER	MARKING					
		0.75	TPS2114APW	2114A					
–40°C to 85°C	TSSOP-8 (PW)	1.25	TPS2115APW	2115A					
	SON-8 (DRB)	2	TPS2115ADRB	CGF					

$D = 1/10 = 10 = 0.000 = 100 \times (1)$

(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Over recommended junction temperature range (unless otherwise noted).

		VALUE		
		MIN	MAX	UNIT
Voltaga	IN1, IN2, D0, D1, ILIM ⁽²⁾	-0.3	6	V
Voltage	V _{O(OUT)} , V _{O(STAT)} ⁽²⁾	-0.3	6	V
	Output sink, I _{O(STAT)}		5	mA
	Continuous output, I _O (TPS2114APW)		0.9	А
Current	Continuous output, I _O (TPS2115APW)		1.5	А
	Continuous output, I_O (TPS2115ADRB), $T_J \le 105^{\circ}C$		2.5	А
Power dissipation	Continuous total	See Power Dis	sipation Rating	gs table
Temperature	Operating virtual junction, T_J	-40	125	°C
ESD ratings	Human body model, HBM		2	kV
	Charge device model, CDM		500	V

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings (1) only, and functional operation of the device at these or any other conditions beyond those indicated is not implied. Exposure to absolutemaximum rated conditions for extended periods may affect device reliability.

(2)All voltages are with respect to GND.

AVAILABLE OPTIONS

FEATURE		TPS2114A	TPS2115A
Current limit adjustment range		0.31 A to 0.75 A	0.63 A to 2 A
Quitabian madea	Manual	Yes	Yes
Switching modes	Automatic	Yes	Yes
Switch status output		Yes	Yes
Dealana		TCCOD	TSSOP-8
Package		TSSOP-8	SON-8

PACKAGE DISSIPATION RATINGS

PACKAGE	DERATING FACTOR ABOVE T _A = 25°C	T _A ≤ 25°C POWER RATING	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
TSSOP-8 (PW)	3.9 mW/°C	387 mW	213 mW	155 mW
SON-8 (DRB)	25.0 mW/°C	2.50 W	1.38 W	1.0 W

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM MAX	UNIT
Input voltage at INI4 V	V _{I(IN2)} ≥ 2.8 V	1.5	5.5	V
Input voltage at IN1, V _{I(IN1)}	V _{I(IN2)} < 2.8 V	2.8	5.5	V
Input voltage et IN2 V	V _{I(IN1)} ≥ 2.8 V	1.5	5.5	V
Input voltage at IN2, $V_{I(IN2)}$	V _{I(IN1)} < 2.8 V	2.8	5.5	V
Input voltage, V _{I(DO)} , V _{I(D1)}		0	5.5	V
	TPS2114APW	0.31	0.75	А
Nominal current limit adjustment range, I _{O(OUT)} ⁽¹⁾	TPS2115APW	0.63	1.25	А
.0(001)	TPS2115ADRB, $T_J \le 105^{\circ}C$	0.63	2	А
Operating virtual junction temperature, T	-40	125	°C	

(1) Minimum recommended current is based on accuracy considerations.

ELECTRICAL CHARACTERISTICS: POWER SWITCH

Over recommended operating junction temperature range, $V_{I(IN1)} = V_{I(IN2)} = 5.5$ V, and $R_{ILIM} = 400 \Omega$, unless otherwise noted.

			Т	PS2114A		TF	S2115A		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		$T_J = 25^{\circ}C, I_L = 500 \text{ mA}, V_{I(IN1)} = V_{I(IN2)} = 5.0 \text{ V}$		120	140		84	110	mΩ
		$T_J = 25^{\circ}C, I_L = 500 \text{ mA}, V_{I(IN1)} = V_{I(IN2)} = 3.3 \text{ V}$		120	140		84	110	mΩ
- (1)	Drain-source on-state	$T_J = 25^{\circ}C, I_L = 500 \text{ mA}, V_{I(IN1)} = V_{I(IN2)} = 2.8 \text{ V}$		120	140		84	110	mΩ
r _{DS(on)} ⁽¹⁾	resistance (INx-OUT)	$T_J = 125^{\circ}C, I_L = 500 \text{ mA}, V_{I(IN1)} = V_{I(IN2)} = 5.0 \text{ V}$			220			150	mΩ
		$T_J = 125^{\circ}C, I_L = 500 \text{ mA}, V_{I(IN1)} = V_{I(IN2)} = 3.3 \text{ V}$			220			150	mΩ
		T_J = 125°C, I _L = 500 mA, V _{I(IN1)} = V _{I(IN2)} = 2.8 V			220			150	mΩ

(1) The TPS211xA can switch a voltage as low as 1.5 V as long as there is a minimum of 2.8 V at one of the input power pins. In this specific case, the lower supply voltage has no effect on the IN1 and IN2 switch on-resistances.

TEXAS INSTRUMENTS

www.ti.com

ELECTRICAL CHARACTERISTICS: GENERAL

Over recommended operating junction temperature range, $V_{I(IN1)} = V_{I(IN2)} = 5.5$ V, and $R_{ILIM} = 400 \Omega$, unless otherwise noted.

				PS2114A			
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OGIC IN	PUTS (D0 AND D1)						
V _{IH}	High-level input voltage		2			V	
/ _{IL}	Low-level input voltage				0.7	V	
	Input current at D0 or D1	D0 or D1 = high, sink current			1	μA	
		D0 or D1 = low, source current	0.5	1.4	5	μA	
SUPPLY /	AND LEAKAGE CURRENTS						
		D1 = high, D0 = low (IN1 active), $V_{I(IN1)}$ = 5.5 V, $V_{I(IN2)}$ = 3.3 V, $I_{O(OUT)}$ = 0 A		55	90	μA	
	Supply current from IN1	D1 = high, D0 = low (IN1 active), $V_{I(IN1)}$ = 3.3 V, $V_{I(IN2)}$ = 5.5 V, $I_{O(OUT)}$ = 0 A		1	12	μA	
	(operating)	$ \begin{array}{l} \text{D0}=\text{D1}=\text{low}\;(\text{IN2 active}),\; \text{V}_{\text{I}(\text{IN1})}=5.5\;\text{V},\\ \text{V}_{\text{I}(\text{IN2})}=3.3\;\text{V},\; \text{I}_{\text{O}(\text{OUT})}=0\;\text{A} \end{array} $			75	μA	
		$\begin{array}{l} D0 = D1 = low \; (IN2 \; active), \; V_{l(IN1)} = 3.3 \; V, \\ V_{l(IN2)} = 5.5 \; V, \; I_{O(OUT)} = 0 \; A \end{array}$			1	μA	
		D1 = high, D0 = low (IN1 active), $V_{I(IN1)}$ = 5.5 V, $V_{I(IN2)}$ = 3.3 V, $I_{O(OUT)}$ = 0 A			1	μA	
	Supply current from IN2	D1 = high, D0 = low (IN1 active), $V_{I(IN1)}$ = 3.3 V, $V_{I(IN2)}$ = 5.5 V, $I_{O(OUT)}$ = 0 A			75	μA	
	(operating)	$ \begin{array}{l} D0 = D1 = low \; (IN2 \; active), \; V_{l(IN1)} = 5.5 \; V, \\ V_{l(IN2)} = 3.3 \; V, \; I_{O(OUT)} = 0 \; A \end{array} $		1	12	μA	
		$ \begin{array}{l} D0 = D1 = low \; (IN2 \; active), \; V_{l(IN1)} = 3.3 \; V, \\ V_{l(IN2)} = 5.5 \; V, \; I_{O(OUT)} = 0 \; A \end{array} $		55	90	μA	
	Quiescent current from IN1	$ \begin{array}{l} D0 = D1 = high \mbox{ (inactive)}, \ V_{l(IN1)} = 5.5 \ V, \\ V_{l(IN2)} = 3.3 \ V, \ I_{O(OUT)} = 0 \ A \end{array} $		0.5	2	μA	
	(STANDBY)	$ \begin{array}{l} D0 = D1 = high \mbox{ (inactive)}, \ V_{l(IN1)} = 3.3 \ V, \\ V_{l(IN2)} = 5.5 \ V, \ I_{O(OUT)} = 0 \ A \end{array} $			1	μA	
	Quiescent current from IN2	$ \begin{array}{l} D0 = D1 = high \mbox{ (inactive)}, \mbox{ $V_{l(IN1)} = 5.5$ V,} \\ \mbox{ $V_{l(IN2)} = 3.3$ V, $I_{O(OUT)} = 0$ A } \end{array} $			1	μA	
	(STANDBY)	$ \begin{array}{l} D0 = D1 = high \mbox{ (inactive)}, \ V_{l(IN1)} = 3.3 \ V, \\ V_{l(IN2)} = 5.5 \ V, \ I_{O(OUT)} = 0 \ A \end{array} $		0.5	2	μA	
	Forward leakage current from IN1 (measured from OUT to GND)	$ \begin{array}{l} D0 = D1 = high \mbox{ (inactive)}, \ V_{I(IN1)} = 5.5 \ V, \ IN2 \ \mbox{open}, \\ V_{O(OUT)} = 0 \ V \mbox{ (shorted)}, \ T_J = 25^{\circ}C \end{array} $		0.1	5	μA	
	Forward leakage current from IN2 (measured from OUT to GND)	D0 = D1= high (inactive), V _{1(IN2)} = 5.5 V, IN1 open, V _{O(OUT)} = 0 V (shorted), T _J = 25°C		0.1	5	μA	
	Reverse leakage current to INx (measured from INx to GND)	$ \begin{array}{c} D0 = D1 = high \ (inactive), \ V_{l(INx)} = 0 \ V, \ V_{O(OUT)} = 5.5 \ V, \\ T_J = 25^{\circ}C \end{array} $		0.3	5	μA	
URREN	T LIMIT CIRCUIT	· · · ·					
	Current limit accuracy, TDC21114	$R_{ILIM} = 400 \ \Omega$	0.51	0.63	0.80	А	
	Current limit accuracy, TPS2114A	R _{ILIM} = 700 Ω	0.30	0.36	0.50	А	
		R _{ILIM} = 400 Ω	0.95	1.25	1.56	Α	
	Current limit accuracy, TPS2115A	R _{ILIM} = 700 Ω	0.47	0.71	0.99	А	
ł	Current limit settling time	Time for short-circuit output current to settle within 10% of its steady state value.		1		ms	
	Input current at ILIM	$V_{I(ILIM)} = 0 \text{ V}, I_{O(OUT)} = 0 \text{ A}$	-15		0	μA	
JVLO		· · · · · · · · · · · · · · · · · · ·					
		Falling edge	1.15	1.25		V	
	IN1 and IN2 UVLO	Rising edge		1.30	1.35	V	
	IN1 and IN2 UVLO hysteresis		30	57	65	mV	
	Internal V _{DD} UVLO (the higher of	Falling edge	2.4	2.53		V	
	IN1 and IN2)	Rising edge		2.58	2.8	V	
	Internal V _{DD} UVLO hysteresis		30	50	75	mV	
	UVLO deglitch for IN1, IN2	Falling edge		110	-	μs	

SBVS044F-MARCH 2004-REVISED MAY 2012

ELECTRICAL CHARACTERISTICS: GENERAL (continued)

Over recommended operating junction temperature range, $V_{I(IN1)} = V_{I(IN2)} = 5.5$ V, and $R_{ILIM} = 400 \Omega$, unless otherwise noted.

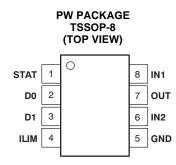
PARAMETER			TF	S2114A		
		TEST CONDITIONS	MIN	TYP	MAX	UNIT
REVERSE	CONDUCTION BLOCKING	· · · ·			¥	
$\Delta V_{O(I_block)}$	Minimum input-to-output voltage difference to block switching	$\begin{array}{l} \text{D0}=\text{D1}=\text{high}, \ V_{\text{I(INx)}}=3.3 \ \text{V}\\ \text{Connect OUT to a 5-V supply through a series 1-k}\Omega\\ \text{resistor. Let D0}=\text{low. Slowly decrease the supply voltage}\\ \text{until OUT connects to IN1.} \end{array}$	80	100	120	mV
THERMAL	SHUTDOWN					
	Thermal shutdown threshold	TPS211xA is in current limit	135			°C
	Recovery from thermal shutdown	TPS211xA is in current limit	125			°C
	Hysteresis			10		°C
IN2-IN1 CO	MPARATORS	· · · · ·			·	
	Hysteresis of IN2-IN1 comparator		0.1		0.2	V
	Deglitch of IN2−IN1 comparator (both ↑↓)		10	20	50	μs
STAT OUT	The				¥	
	Leakage current	$V_{O(STAT)} = 5.5 V$		0.01	1	μA
	Saturation voltage	I _{I(STAT)} = 2 mA, IN1 switch is on		0.13	0.4	V
	Deglitch time (falling edge only)			150		μs

SWITCHING CHARACTERISTICS

Over recommended operating junction temperature range, $V_{I(IN1)} = V_{I(IN2)} = 5.5$ V, and $R_{ILIM} = 400 \Omega$, unless otherwise noted.

			т	PS2114A		TF	PS2115A		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
POWER	SWITCH	•							
t _r	Output rise time from an enable	$V_{I(IN1)} = V_{I(IN2)} = 5$ V, $T_J = 25^\circ C, \ C_L = 1 \ \mu F, \ I_L = 500$ mA (see Figure 1a)	0.5	1.0	1.5	1	1.8	3	ms
t _f	Output fall time from a disable	$V_{I(IN1)} = V_{I(IN2)} = 5$ V, $T_J = 25^\circ C, \ C_L = 1 \ \mu F, \ I_L = 500 \ mA$ (see Figure 1a)	0.35	0.5	0.7	0.5	1	2	ms
	IN1 to IN2 transition, $V_{I(IN1)} = 3.3 \text{ V}$, $V_{I(IN2)} = 5 \text{ V}$, T _J = 125°C, C _L = 10 μ F, I _L = 500 mA Measure transition time as 10–90% rise time or from 3.4 V to 4.8 V on V _{O(OUT)} (see Figure 1b).		40	60		40	60	μs	
t _t	Transition time	IN2 to IN1 transition, $V_{I(IN1)} = 5 V$, $V_{I(IN2)} = 3.3 V$, $T_J = 125^{\circ}C$, $C_L = 10 \mu$ F, $I_L = 500 \text{ mA}$ Measure transition time as 10–90% rise time or from 3.4 V to 4.8 V on $V_{O(OUT)}$ (see Figure 1b).		40	60		40	60	μs
t _{PLH1}	Turn-on propagation delay from enable	$V_{I(IN1)}$ = $V_{I(IN2)}$ = 5 V, measured from enable to 10% of $V_{O(OUT)},~T_J$ = 25°C, C_L = 10 $\mu F,~I_L$ = 500 mA (see Figure 1a)		0.5			1		ms
t _{PHL1}	Turn-off propagation delay from a disable	$V_{I(IN1)}$ = $V_{I(IN2)}$ = 5 V, measured from disable to 90% of $V_{O(OUT)},~T_J$ = 25°C, C_L = 10 $\mu F,~I_L$ = 500 mA (see Figure 1a)		3			5		ms
t _{PLH2}	Switch-over rising propagation delay	Logic 1 to Logic 0 transition on D1, $V_{I(IN1)} = 1.5 \text{ V}$, $V_{I(IN2)} = 5 \text{ V}$, $V_{I(D0)} = 0 \text{ V}$, measured from D1 to 10% of $V_{O(OUT)}$, $T_J = 25^{\circ}\text{C}$, $C_L = 10 \ \mu\text{F}$, $I_L = 500 \ \text{mA}$ (see Figure 1c)		40	100		40	100	μs
t _{PHL2}	Switch-over falling propagation delay	Logic 0 to Logic 1 transition on D1, $V_{I(IN1)} = 1.5V$, $V_{I(IN2)} = 5V$, $V_{I(D0)} = 0$ V, measured from D1 to 90% of $V_{O(OUT)}$, $T_J = 25^{\circ}C$, $C_L = 10 \ \mu$ F, $I_L = 500 \ m$ A (see Figure 1c)	2	3	10	2	5	10	ms

www.ti.com


Table 1. Truth Table

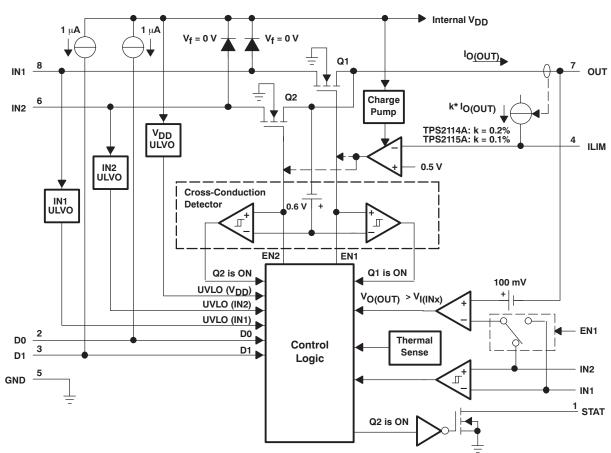
D1	D0	$V_{I(IN2)} > V_{I(IN1)}$	STAT	OUT ⁽¹⁾
0	0	X ⁽²⁾	Hi-Z	IN2
0	1	No	0	IN1
0	1	Yes	Hi-Z	IN2
1	0	Х	0	IN1
1	1	Х	0	Hi-Z

(1) The under-voltage lockout circuit causes the output OUT to go Hi-Z if the selected power supply does not exceed the IN1/IN2 UVLO, or if neither of the supplies exceeds the internal V_{DD} UVLO.

(2) X = Don't care.

PIN CONFIGURATIONS

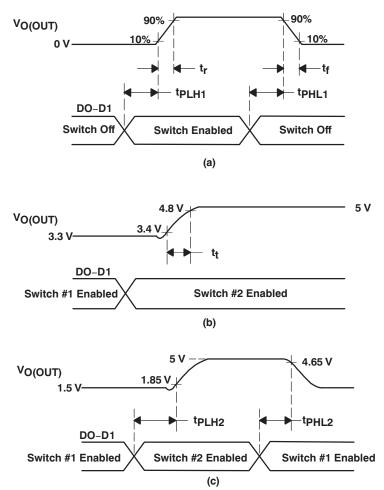
DRB PACKAGE 3mm × 3mm SON-8 (TOP VIEW)


STAT	1		8	IN1
D0	2		7	оит
D1	3	GND	6	IN2
ILIM	4		5	GND

TERMINAL FUNCTIONS

TERMINAL			
NAME	NO.	I/O	DESCRIPTION
D0	2	I	TTL- and CMOS-compatible input pins. Each pin has a 1- μ A pull-up. Table 1 illustrates the functionality of D0 and D1.
D1	3	I	TTL- and CMOS-compatible input pins. Each pin has a $1-\mu A$ pull-up. Table 1 illustrates the functionality of D0 and D1.
GND	5	I	Ground
IN1	8	I	Primary power switch input. The IN1 switch can be enabled only if the IN1 supply is above the UVLO threshold and at least one supply exceeds the internal V_{DD} UVLO.
IN2	6	I	Secondary power switch input. The IN2 switch can be enabled only if the IN2 supply is above the UVLO threshold and at least one supply exceeds the internal V_{DD} UVLO.
ILIM	4	I	A resistor $R_{\rm ILIM}$ from ILIM to GND sets the current limit I _L to 250/R _{ILIM} and 500/R _{ILIM} for the TPS2114A and TPS2115A, respectively.
OUT	7	0	Power switch output
STAT	1	0	STAT is an open-drain output that is Hi-Z if the IN2 switch is ON. STAT pulls low if the IN1 switch is ON or if OUT is Hi-Z (i.e., EN is equal to logic 0).
PAD	_	I	Tie to GND. Connect to internal planes for improved heatsinking with multiple vias.

SBVS044F-MARCH 2004-REVISED MAY 2012



FUNCTIONAL BLOCK DIAGRAM

TEXAS INSTRUMENTS

SBVS044F-MARCH 2004-REVISED MAY 2012

www.ti.com

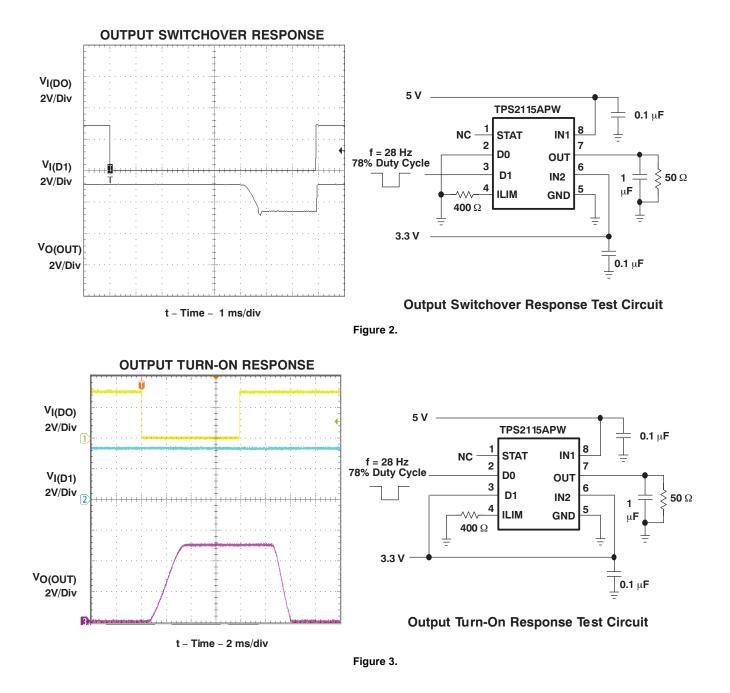

PARAMETER MEASUREMENT INFORMATION

Figure 1. Propagation Delays and Transition Timing Waveforms

SBVS044F-MARCH 2004-REVISED MAY 2012

TYPICAL CHARACTERISTICS

TEXAS INSTRUMENTS

www.ti.com

SBVS044F-MARCH 2004-REVISED MAY 2012

TYPICAL CHARACTERISTICS (continued)

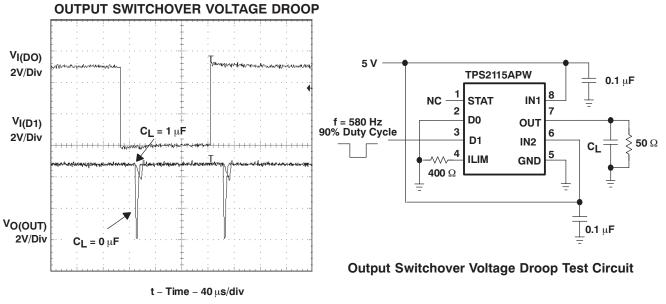
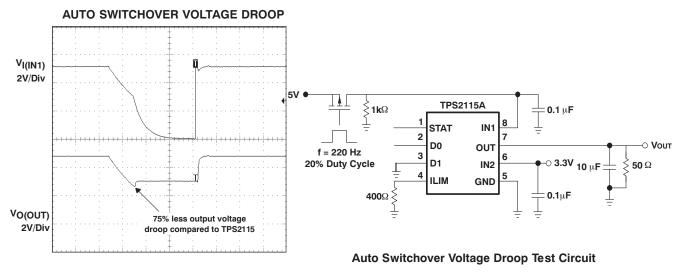


Figure 4.

www.ti.com

TYPICAL CHARACTERISTICS (continued)


Figure 5.

TEXAS INSTRUMENTS

SBVS044F-MARCH 2004-REVISED MAY 2012

www.ti.com

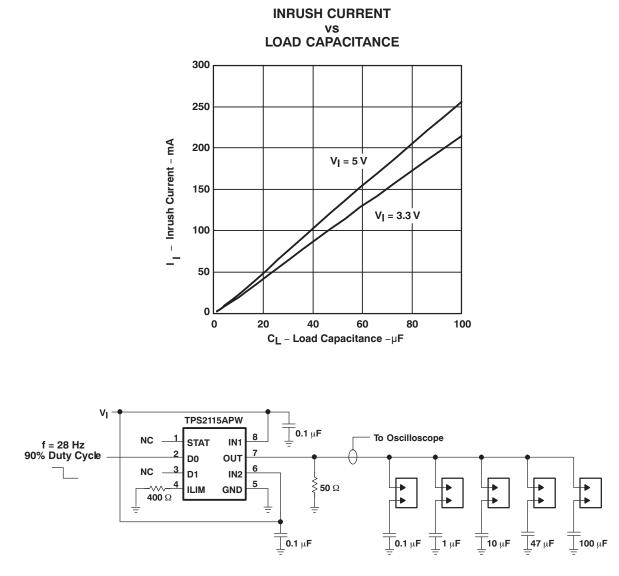

t – Time – 250 $\mu\text{s}/\text{div}$

Figure 6.

www.ti.com

TYPICAL CHARACTERISTICS (continued)

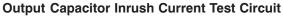
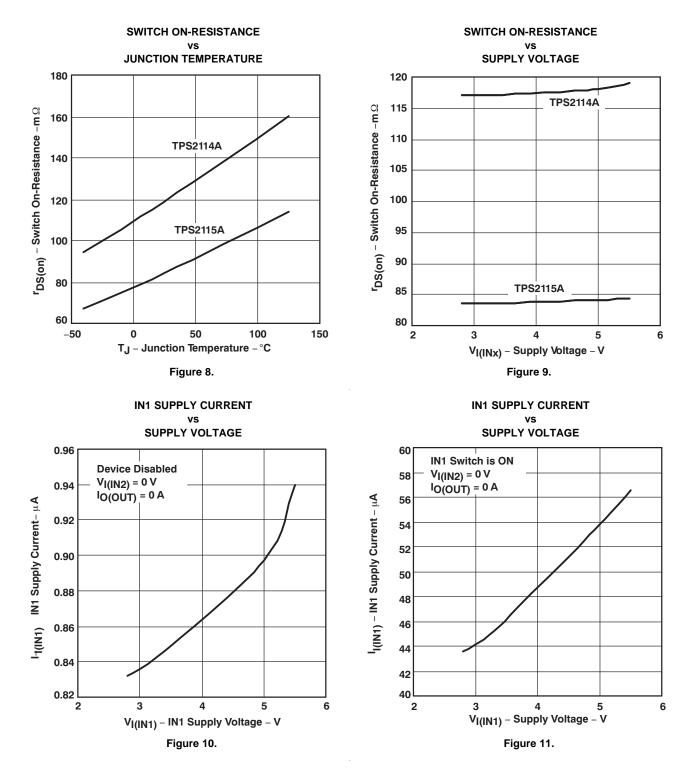
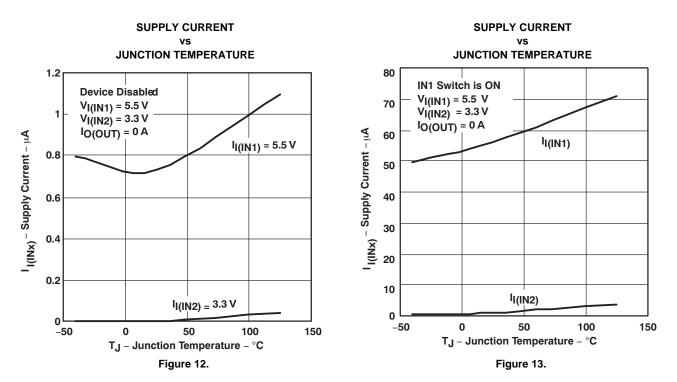



Figure 7.

www.ti.com


TYPICAL CHARACTERISTICS (continued)

www.ti.com

APPLICATION INFORMATION

Some applications have two energy sources, one of which should be used in preference to another. Figure 14 shows a circuit that will connect IN1 to OUT until the voltage at IN1 falls below a user-specified value. Once the voltage on IN1 falls below this value, the TPS2114A/5A will select the higher of the two supplies. This usually means that the TPS2114A/5A will swap to IN2.

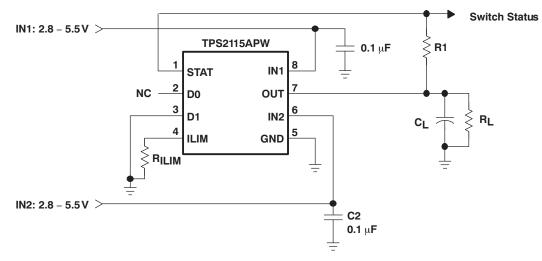


Figure 14. Auto-Selecting for a Dual Power Supply Application

In Figure 15, the multiplexer selects between two power supplies based upon the D1 logic signal. OUT connects to IN1 if D1 is logic 1; otherwise, OUT connects to IN2. The logic thresholds for the D1 terminal are compatible with both TTL and CMOS logic.

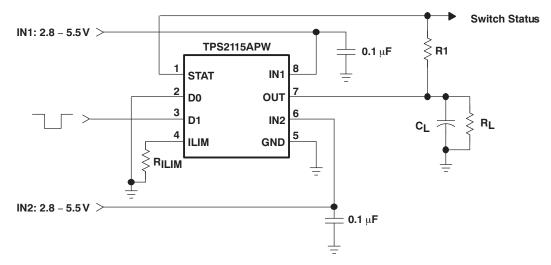


Figure 15. Manually Switching Power Sources

DETAILED DESCRIPTION

AUTO-SWITCHING MODE

D0 equal to logic 1 and D1 equal to logic 0 selects the auto-switching mode. In this mode, OUT connects to the higher of IN1 and IN2.

MANUAL SWITCHING MODE

D0 equal to logic 0 selects the manual-switching mode. In this mode, OUT connects to IN1 if D1 is equal to logic 1, otherwise OUT connects to IN2.

N-CHANNEL MOSFETs

Two internal high-side power MOSFETs implement a single-pole double-throw (SPDT) switch. Digital logic selects the IN1 switch, IN2 switch, or no switch (Hi-Z state). The MOSFETs have no parallel diodes so output-to-input current cannot flow when the FET is off. An integrated comparator prevents turn-on of a FET switch if the output voltage is greater than the input voltage.

CROSS-CONDUCTION BLOCKING

The switching circuitry ensures that both power switches will never conduct at the same time. A comparator monitors the gate-to-source voltage of each power FET and allows a FET to turn on only if the gate-to-source voltage of the other FET is below the turn-on threshold voltage.

REVERSE-CONDUCTION BLOCKING

When the TPS211xA switches from a higher-voltage supply to a lower-voltage supply, current can potentially flow back from the load capacitor into the lower-voltage supply. To minimize such reverse conduction, the TPS211xA will not connect a supply to the output until the output voltage has fallen to within 100 mV of the supply voltage. Once a supply has been connected to the output, it will remain connected regardless of output voltage.

CHARGE PUMP

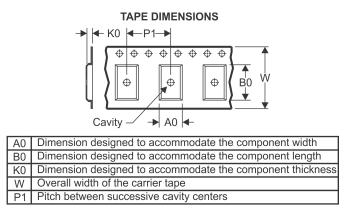
The higher of supplies IN1 and IN2 powers the internal charge pump. The charge pump provides power to the current limit amplifier and allows the output FET gate voltage to be higher than the IN1 and IN2 supply voltages. A gate voltage that is higher than the source voltage is necessary to turn on the N-channel FET.

CURRENT LIMITING

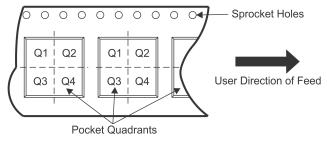
A resistor R_{ILIM} from ILIM to GND sets the current limit to 250/ R_{ILIM} and 500/ R_{ILIM} for the TPS2114A and TPS2115A, respectively. Setting resistor R_{ILIM} equal to zero is not recommended as that disables current limiting.

OUTPUT VOLTAGE SLEW-RATE CONTROL

The TPS2114A/5A slews the output voltage at a slow rate when OUT switches to IN1 or IN2 from the Hi-Z state (see Table 1). A slow slew rate limits the inrush current into the load capacitor. High inrush currents can glitch the voltage bus and cause a system to hang up or reset. It can also cause reliability issues—like pit the connector power contacts, when hot-plugging a load such as a PCI card. The TPS2114A/5A slews the output voltage at a much faster rate when OUT switches between IN1 and IN2. The fast rate minimizes the output voltage droop and reduces the output voltage hold-up capacitance requirement.

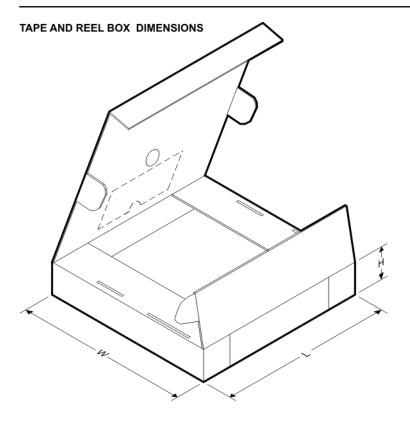

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS2114APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TPS2115ADRBR	SON	DRB	8	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS2115ADRBT	SON	DRB	8	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS2115APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

11-Jun-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS2114APWR	TSSOP	PW	8	2000	367.0	367.0	35.0
TPS2115ADRBR	SON	DRB	8	3000	367.0	367.0	35.0
TPS2115ADRBT	SON	DRB	8	250	210.0	185.0	35.0
TPS2115APWR	TSSOP	PW	8	2000	367.0	367.0	35.0

www.ti.com

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cł	nanges from Revision E (April 2011) to Revision F Pa	ige
•	Changed description of power supplies in <i>Description</i> section	. 1
•	Added I _{OUT} column to Device Information table	. 2
•	Changed conditions of Absolute Maximum Ratings table	. 2
•	Added PW to end of device name in first two continuous output rows in <i>Current</i> parameter of Absolute Maximum Ratings table	. 2
•	Added last continuous output row to Current parameter in Absolute Maximum Ratings table	. 2
•	Deleted storage temperature row from Absolute Maximum Ratings table	. 2
•	Changed Current limit adjustment range parameter, TPS2115A specification in Available Options table	. 2
•	Changed Nominal current limit adjustment range parameter in Recommended Operating Conditions table	. 3
•	Added footnote 1 to Recommended Operating Conditions table	. 3

Changes from Revision D (July 2006) to Revision E

Page

•	Updated document to current format	1
•	Changed title, footnote, and CGF marking in Device Information table	2
•	Deleted footnote 1 (not tested in production) from Electrical Characteristics: General table	4
•	Deleted footnote 1 (not tested in production) from Switching Characteristics table	5
•	Added PAD row to Terminal Functions table	6

15-Apr-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS2114APW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2114A	Samples
TPS2114APWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2114A	Samples
TPS2114APWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2114A	Samples
TPS2115ADRBR	ACTIVE	SON	DRB	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CGF	Samples
TPS2115ADRBRG4	ACTIVE	SON	DRB	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CGF	Samples
TPS2115ADRBT	ACTIVE	SON	DRB	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CGF	Samples
TPS2115ADRBTG4	ACTIVE	SON	DRB	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CGF	Samples
TPS2115APW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2115A	Samples
TPS2115APWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2115A	Samples
TPS2115APWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2115A	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

15-Apr-2017

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

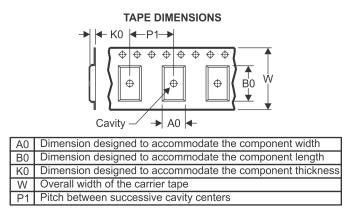
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS2115A :

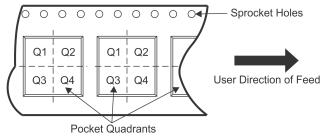
• Automotive: TPS2115A-Q1

NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

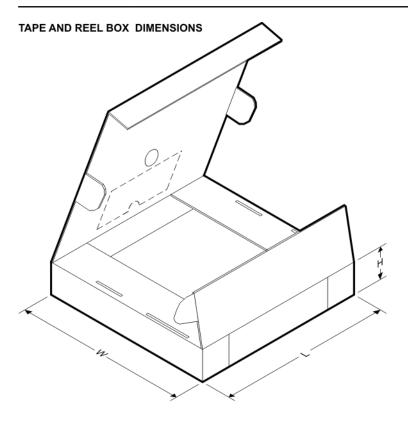

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

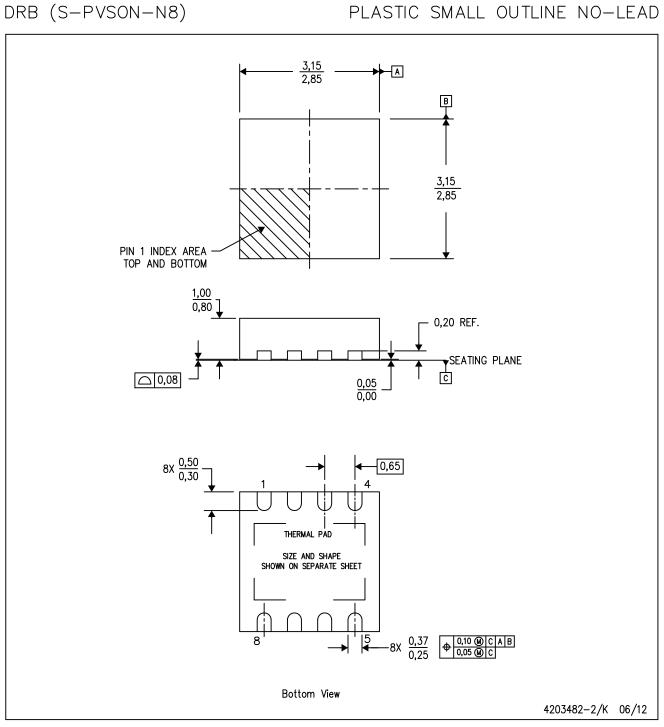
TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nomina Device	1	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS2114APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TPS2115ADRBR	SON	DRB	8	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS2115ADRBT	SON	DRB	8	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS2115APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com


PACKAGE MATERIALS INFORMATION

19-Dec-2015

*All dimensions are nominal

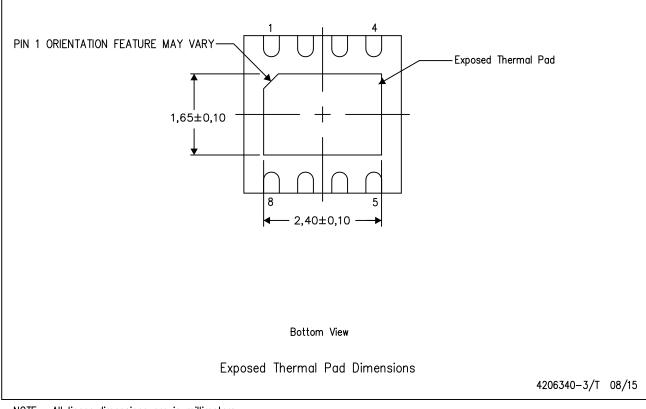
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS2114APWR	TSSOP	PW	8	2000	367.0	367.0	35.0
TPS2115ADRBR	SON	DRB	8	3000	367.0	367.0	35.0
TPS2115ADRBT	SON	DRB	8	250	210.0	185.0	35.0
TPS2115APWR	TSSOP	PW	8	2000	367.0	367.0	35.0

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Small Outline No-Lead (SON) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

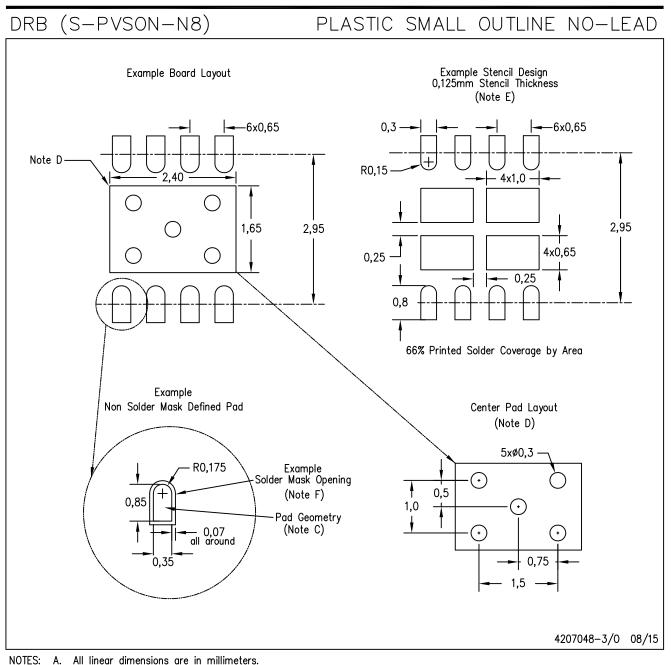
THERMAL PAD MECHANICAL DATA

DRB (S-PVSON-N8)


PLASTIC SMALL OUTLINE NO-LEAD

THERMAL INFORMATION

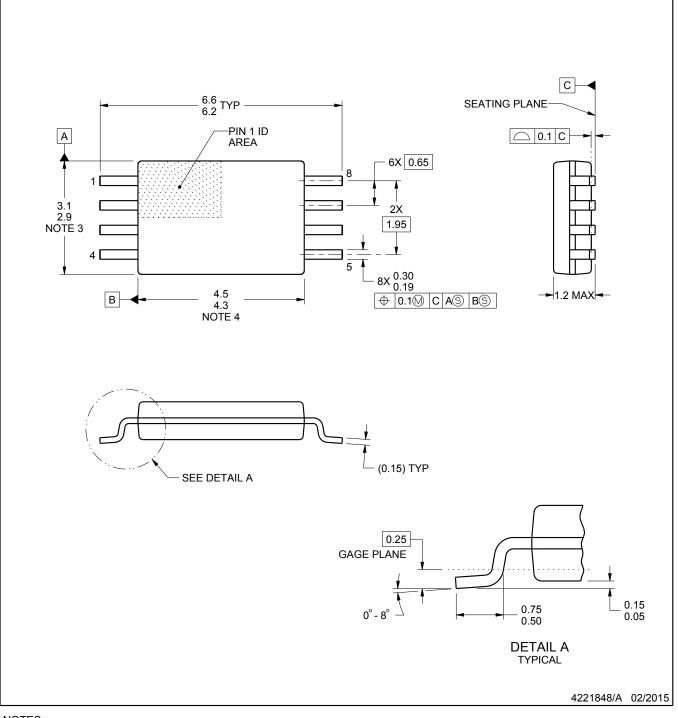
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).


For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

- : A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.C. Publication IPC-7351 is recommended for alternate designs.
 - D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN
 - Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
 - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
 - F. Customers should contact their board fabrication site for solder mask tolerances.


PW0008A

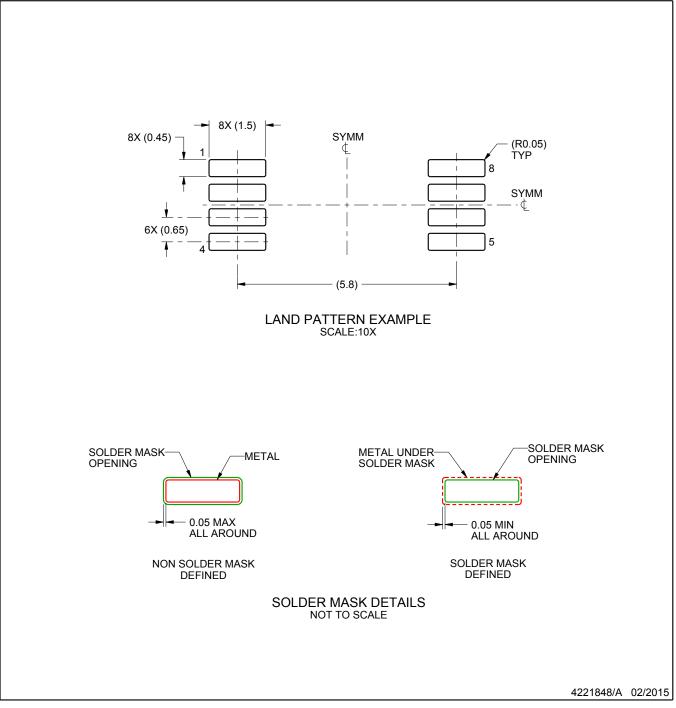
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.



PW0008A

EXAMPLE BOARD LAYOUT

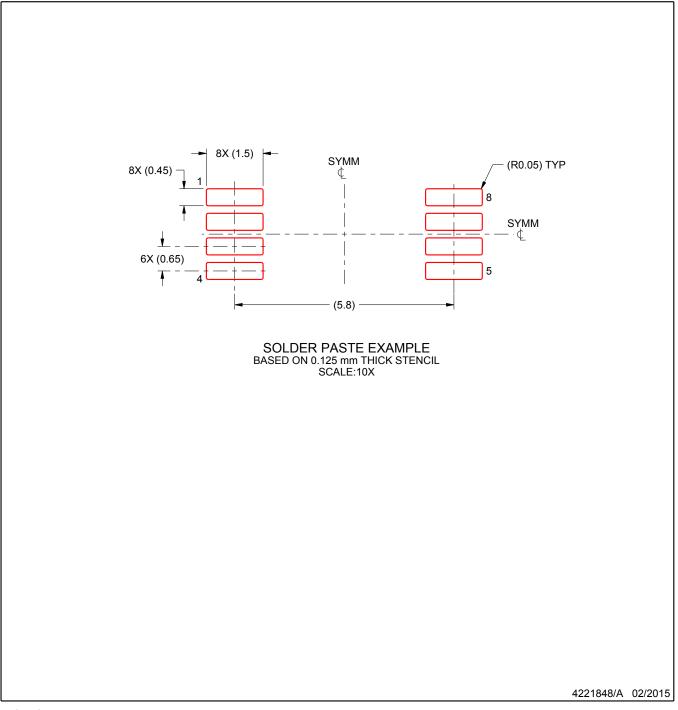
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0008A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated